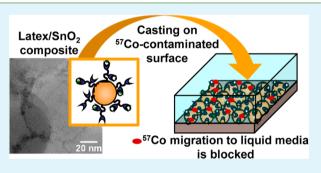
Polymer–Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 2. Latex/Tin Oxide Composites for Cobalt **Fixation**

Svetlana Bratskaya,^{*,†} Alexander Mironenko,[†] Risto Koivula,[‡] Alla Synytska,^{§,||} Anna Musyanovych,^{⊥,#} Frank Simon,[§] Dmitry Marinin,[†] Michael Göbel,[§] Risto Harjula,[‡] and Valentin Avramenko[†]

[†]Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, 690022 Vladivostok, Russia

[‡]University of Helsinki, A. I. Virtasenaukio 1, 00560 Helsinki, Finland

[§]Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany


^{II}Technische Universität Dresden, Physikalische Chemie Polymerer Materialen, 01062 Dresden, Germany

¹Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

[#]Fraunhofer ICT-IMM, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany

Supporting Information

ABSTRACT: Colloidal tin oxide with an average particle size of 3.5 nm, which was ex-situ synthesized by the sol-gel method, has been attached to the surface of amino-functionalized poly(acrylateco-silane) latex particles with a diameter of 100 nm to yield a composite with selective sorption properties toward Co²⁺ ions. Electrokinetic properties and the colloidal stability of the synthesized latex/SnO₂ composites have been evaluated in dependence on SnO₂ content and pH; the sorption capacity and distribution coefficients of composites for Co²⁺ ions were in accordance with the SnO₂ content and its sorption performance as an individual compound. Composite coatings obtained by casting

latex/SnO₂ dispersions on guartz sand spiked with ⁵⁷Co radionuclide have efficiently eliminated radionuclides migration from the surface when the SnO_2 volume fraction in the film was 3.5-4.7%. Furthermore, at these SnO_2 loadings, the composite coatings retained the coherent structure of the original latex coating with SnO₂ particles homogeneously distributed over the film thickness. The presence of competing Ca^{2+} ions in the leaching media at a concentration of above 0.01 mol/L results in a decrease of the distribution coefficients of the latex/SnO2 composite and significantly higher ⁵⁷Co leaching. The value of the distribution coefficient of the sorption material to be used in latex composite coatings to prevent migration of radionuclides shall be close to 10^6 mL/g.

KEYWORDS: nanoparticles, ⁵⁷Co, SnO₂, radionuclide migration, soil, dust suppressor

1. INTRODUCTION

Soil can be considered as the main reservoir for artificial radionuclides originated from atmospheric nuclear weapons tests and nuclear power plant accidents.^{1,2} Besides, radioactive contamination of the environment can happen as a result of dirty bombs terrorist attacks,³ explosions, and fires in industry and in transportation of sealed radiation sources. Sealed sources are typically highly radioactive devices having activities of TBq scale where the radioactive isotope is encapsulated, so that under normal operation conditions it is safely isolated from the surrounding by the protective sealing. In the case of an explosion and fire or cutting through the source sealing, radioactivity can spread to the environment and cause local radioactive contamination. Although, in contrast to cesium and strontium, cobalt radionuclides are not considered among the main contributors to radioactive pollutions after accidents at nuclear power plants, they are very common in industry, medical practice, and research and, due to these reasons, are also more likely to be used in dirty bombs.³ Cobalt radionuclides are strong γ -emitters, whose release from the sealed sources poses a serious health risk for humans and animals. This determines a sustained interest to the fate of cobalt radionuclides in the environment, sorption/desorption on soil components, and bioavailability. $^{1,4,5}\!$

Independently of which strategy will be used for remediation of a radioactively contaminated site, it is imperative to eliminate or reduce migration of the radionuclides until cleanup is completed or until the radiation has decayed back to acceptable

September 17, 2014 Received: Accepted: November 26, 2014 Published: November 26, 2014

ACS Publications © 2014 American Chemical Society

ACS Applied Materials & Interfaces

levels.⁶ In order to prevent radionuclides spreading from a contaminated surface with aerosols, application of polymeric or emulsion fixatives (dust suppressors) became a general practice after nuclear accidents. These formulations are typically casted or spray dried on the contaminated surface within the first hours after the accident to form coatings allowing radionuclides fixation within the top thin layer of the soil or ground.³ This measure helps to reduce radionuclides migration from the surface with aerosols; however, substantial improvement is still required to eliminate water permeability of fixative coatings and limit radionuclides migration downward to the soil profile with groundwater and atmospheric precipitates. This is a crucial step in reducing the volume of soil to be removed or cleaned after nuclear accidents.^{3,6}

We have recently shown that the permeability of fixative latex coatings to cesium radionuclides can be significantly reduced if latex/selective sorbent (cobalt hexacyanoferrate) nanocomposites were used for coatings fabrication.⁷ In such materials the film-forming properties of the latex are combined with the sorption properties of inorganic material allowing entrapment of radionuclides in the dust-suppressing film even under permanent contact with liquid media. The aim of the present work was to demonstrate that the same approach can be generalized to fixation of other radionuclides using appropriate selective sorbents for composite fabrication. While transition metal hexacyanoferrates are highly selective to cesium ions,⁸ tin oxide shows selective sorption properties toward transition metals such as cobalt^{9-f1} and nickel⁹ ions and can be considered as a promising candidate for fabrication of latex/ inorganic composite coatings for fixation of these radionuclides on contaminated surface and prevention of their further migration with atmospheric precipitates and ground waters.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Reagents and Latex Synthesis. Latex synthesis is described in detail in ref 7. The BMADS-0.3 latex poly(methyl methacrylate-*co*-butyl acrylate-*co*-diethoxy(methyl)vinyl silane-*co*-aminoethyl methacrylate) was characterized by an electro-kinetic potential (ζ) of +25 ± 7 mV and a particle size of 110 ± 13 nm (pH 6.4, 10⁻⁴ M KCl). The number of $-NH_2$ groups per latex particle determined by colloid titration¹² was 36 790.

2.2. SnO₂ Synthesis. SnO₂ was synthesized using the conventional sol-gel method, ¹¹ where SnCl₄ was dissolved in 6 M HCl, and then SnO₂ was precipitated by raising the pH to 3 using 25% ammonia. The precipitate was then washed with distilled water until the water became turbid after 12 h settling time. The precipitate was then placed in a dialysis tube (Visking tube 12–14 kDa), and the tube was placed in a beaker, where fresh ammonia solution (pH 10) was circulated, until the precipitate became a clear solution. The content of tin oxide in the dispersion was 3%.

2.3. Composites and Coatings Preparation. To obtain composites, a predetermined volume of SnO_2 dispersion was added into a latex dispersion with the solid content 2% at pH 5.1 ± 0.1. Composites were labeled as BMADS-0.3/SnO₂ or BMADS-0.3/SnO₂, w, where w is the content of SnO₂ as milligrams per 1 g of dry latex. Coatings were obtained by casting BMADS-0.3/SnO₂ composite dispersions on the silicon wafer or ⁵⁷Co-spiked quartz sand as described in ref 7. The volume fraction of SnO₂ (φ) in composite coatings was calculated according to the following formula

$$\phi = \frac{W_{\text{SnO2}} \cdot V_{\text{I}} \cdot C_{\text{I}}}{h_{\text{film}} \cdot S_{\text{film}} \cdot \rho_{\text{SnO2}}} \cdot 100\%$$

where W_{SnO2} is the content of SnO₂ in composite, g(SnO₂) per 1 g of the dry latex, C_1 is the latex solid content in composite dispersion, g/L, V_1 is the casted volume of the latex/SnO₂ composite dispersion, L, h_{film}

is the coating (film) thickness, cm, $S_{\rm film}$ is the film area, cm², and $\rho_{\rm SnO2}$ is the SnO₂ density (2.02 g/cm³).

2.4. Characterization of the Latex, SnO₂, and Latex/SnO₂ Composites. The size and electrokinetic potential of the particles were determined using ZetaSizer Nano ZS analyzer (Malvern Instruments Ltd., Malvern, U.K.).

The morphology of coatings was characterized by means of electron microscopy. A cross-section of the polymer layer was prepared in the form of a simple cut and in the form of a thin lamella by the focused ion beam (NEON40, Carl Zeiss Microscopy GmbH, Oberkochen, Germany) lift-out method after an approximately 100 nm platinum layer was sputtered on the surface (SCD 500 coater, Leica Microsystems GmbH, Wetzlar, Germany). The simple cut was imaged in a scanning electron microscope (SEM, NEON40). The thin lamella was imaged in a transmission electron microscope (TEM, Libra200, Carl Zeiss Microscopy GmbH, Oberkochen, Germany).

2.4.1. X-ray Photoelectron Spectroscopy (XPS). BMADS-0.3/ SnO₂-50 composite coating on silicon wafer was introduced in the vacuum system of the Axis Ultra X-ray photoelectron spectrometer (Kratos Analytical, Manchester, U.K.). The spectrometer was equipped with a monochromatic Al K α ($h\nu$ = 1486.6 eV) X-ray source of 300 W at 15 kV. The kinetic energy of photoelectrons was determined with a hemispheric analyzer set to a pass energy of 160 eV for the wide-scan spectrum and 20 eV for the C 1s high-resolution spectrum. During all measurements electrostatic charging of the sample was avoided by means of a low-energy electron source working in combination with a magnetic immersion lens. Later, all recorded peaks were shifted by the same value that was necessary to set the C 1s peak to 285.00 eV. For the C 1s region the maximum information depth of the XPS method was not more than 8 nm. Quantitative elemental compositions were determined from peak areas using experimentally determined sensitivity factors and the spectrometer transmission function. Spectrum background was subtracted according to the Shirley method. The high-resolution C 1s spectrum was deconvoluted by means of the Kratos spectra deconvolution software. Free parameters of component peaks were their binding energy, height, full width at half-maximum, and the Gaussian-Lorentzian ratio.

2.5. Determination of Distribution Coefficients and Sorption Capacity. Sorption isotherms were obtained by the batch method: an aliquot of BMADS-0.3/SnO₂-50 composite or SnO₂ dispersion was added to CoCl₂ solutions in 0.01 M acetate buffer (CH₃COOH/CH₃COONa, pH 5) so that the solid content in dispersion was 0.05%. After gentle shaking for 18 h, SnO₂ or composite particles were separated by centrifugation (at 30 000 rpm, 30 min), the content of cobalt in supernatant was determined by the atomic spectroscopy method using a Solaar 6 M spectrometer (Thermo Fisher Scientific, Waltham, MA). Sorption capacities in both cases were calculated relative to the weight of SnO₂.

The distribution coefficients (K_d) for SnO₂ and BMADS-0.3/SnO₂-30 composite have been determined in water and 0.5, 0.1, 0.01, and 0.001 M CaCl₂ solutions using the ⁵⁷Co-tracer method: latex/SnO₂ composite or SnO₂ dispersion in solutions with pH 5 were traced with ⁵⁷Co, and initial γ -activities (~120 Bq/mL) of the dispersions were measured using gamma counter WIZARD 1470 (PerkinElmer, Inc., Waltham, MA). After gentle shaking of the dispersion for 18 h, solid particles were separated by centrifugation (30 000 rpm, 30 min) and γ activities of supernatants (A_1) were measured by the same method. The γ -activity of the solid phase (A_s) was calculated as a difference between the initial total activity of the sample and the measured activity of the supernatant (A_1).

 $K_{\rm d}$ values were calculated according to the formula $K_{\rm d} = A_{\rm S}/A_{\rm l} \cdot V/m$, where $A_{\rm s}$ and $A_{\rm l}$ are the ⁵⁷Co γ -activities in the solid and liquid phase, respectively, V is the liquid-phase volume (10 mL), and m is the the weight of the composite (0.005 g) or SnO₂ (0.00015 g).

2.6. ⁵⁷**Co Leaching Test.** Samples for leaching tests were prepared as described in ref 7 using ⁵⁷Co. In brief, 60–70 mg of quartz sand (fraction 0.100–0.315 mm) spiked with ⁵⁷Co (resulting γ -activity \approx 2000 Bq/g) was homogeneously distributed over a 5.29 cm² piece of a double-sided adhesive tape attached to a Petri dish. The coatings on

the sand surfaces were formed as described in section 2.3 and dried for 24 h prior to 57 Co leaching experiments. The initial γ -activity of each sample was measured by the direct spectrometric method from the line $E\gamma = 122$ keV using a γ -ray spectrometer with the germanium detector (Canberra Corp., Meriden, CT). Then 20 mL of distilled water or CaCl₂ solution was introduced into the Petri dish and left without shaking for 1000 min (or for the fixed time from 10 min to 6 days in kinetics study). The 57 Co distribution between the leaching solution and the solid phase was monitored by measuring the γ -activity of the liquid using gamma counter WIZARD 1470 (PerkinElmer, Inc., Waltham, MA). The amount of 57 Co leached from the sand surface (*L*) was estimated as

$$L = (A_{\text{leached}} / A_0) \cdot 100\%$$

where A_0 is the initial total γ -activity of the solid sample and A_{leached} is the total γ -activity of the solid sample after leaching.

The experimental error of γ -activity measurements was close to 0.3%. For low residual γ -activity (high *L* values) the counting time was increased to reach the required accuracy.

3. RESULTS AND DISCUSSION

3.1. Fabrication and Properties of Latex/SnO₂ Composites. The general concept of the suggested approach to eliminate migration of radionuclides in the environment after nuclear accidents was previously reported in ref 7. BMADS-0.3/ SnO₂ composites have been fabricated via electrostatic attachment of ex-situ-synthesized colloidal SnO₂ to the surface of amino latex that was possible due to the opposite charge of these nanoparticles in the pH range 3.5-7.5 (Figure 1). However, the pH interval, where stable BMADS-0.3/SnO₂ composites can be formed, is narrowed by aggregation of SnO₂ nanoparticles at pH < 5 (Figure S1, Supporting Information).

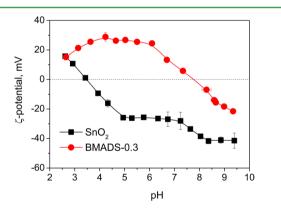


Figure 1. Dependence of electrokinetic potential values (ζ -potential) of BMADS-0.3 latex and colloidal SnO₂ on pH.

Once composite was formed, aggregation of SnO_2 was suppressed and composite remained colloidally stable over the broader pH range than pure SnO_2 (Figure 2A). The TEM image of the aminolatex/ SnO_2 composite (Figure S2, Supporting Information) shows that SnO_2 nanoparticles form on the latex surface in thin irregular layer. The stability of BMADS-0.3/ SnO_2 composites decreased when the content of SnO_2 added to the latex dispersion was above 50 mg per 1 g of dry latex particles, as indicated by a sharp increase of the composite particle size (Figure 2B) and precipitation of SnO_2 (Figure S2, Supporting Information).

At maximum packing density, the surface of a sphere with a diameter of 98 nm (latex) can accommodate 2463 particles with a diameter of 3.5 nm (SnO₂). At the same time, simple

calculations for the BMADS-0.3/SnO₂-50 composite give a value of 521 particles of SnO₂ per latex particle. Thus, the surface coverage, at which the colloidal stability of the BMADS-0.3/latex system drops due to heterocoagulation, is about 20% (see the Supporting Information for details of the calculations). It is worth mentioning that SnO₂ shows a strong tendency to formation of large aggregates of primary SnO₂ particles even in alkaline media as illustrated by TEM imaging and the particle size distribution (Figure S3, Supporting Information). Thus, at higher surface coverage, interparticle interactions between SnO₂ can contribute to destabilization of the composite via bridging neighboring latex particles.

The sorption properties of BMADS-0.3/SnO₂ toward ⁵⁷Co radionuclides composite are determined only by the presence of SnO₂ Data in Table 1 show that the BMADS latex does not efficiently bind ⁵⁷Co, since, independently of the concentration of competing ions, its K_d values are extremely low. Comparison of K_d values for colloidal SnO₂ and BMADS-0.3/SnO₂ shows that binding to the latex does not negatively influence the sorption performance of SnO₂. In both cases the distribution coefficients decrease with an increase of calcium ion concentration (Table 1). It should be also mentioned that composites as well as colloidal SnO₂ show a tendency to strong aggregation at a Ca^{2+} concentration of 0.01 M and higher (Figure S4, Supporting Information). The sorption capacities toward Co²⁺ ions of SnO₂ alone and in composite are very close, 0.36 ± 0.04 and 0.31 ± 0.01 mmol/g, respectively (Figure S5, Supporting Information), and in the range reported previously for tin oxide.¹⁰

3.2. Fabrication and Properties of BMADS-0.3/SnO₂ Composite Coatings. Casting of BMADS-0.3 and BMADS-0.3/SnO₂ composite dispersions (latex contents 2%) resulted in formation of coatings with a thickness of about 4 μ m. Embedding of SnO₂ into the latex film lead to an increase of surface roughness from 0.18 to 0.45 μ m and hydrophilicity. The advancing contact angle (θ_{adv}), measured as described in ref 7, decreased from 54° for original latex to 30° for BMADS-0.3/ SnO₂-50 composite coatings. However, it seems that the presence of SnO₂ particles does not hinder latex coalescence and formation of flaw-free coherent coatings (Figure S6, Supporting Information).

XPS investigation of the surface of BMADS-0.3/SnO₂-50 composite coating (Figure 3) revealed that the majority of the photoelectrons contributed to the element peaks of carbon (C 1s peak), oxygen (O 1s and O 2s peaks), and silicon (Si 2p and Si 2s peaks) resulted from the elements of the polymer matrix. Tin was detected as the Sn 3p duplet consisting of the Sn $3p_{3/2}$ and Sn $3p_{1/2}$ peaks and Sn 3d duplet consisting of the Sn $3d_{5/2}$ and Sn $3d_{3/2}$ peaks. Furthermore, the couple of Sn MNN Auger peaks (Sn $M_5N_{45}N_{45}$ and Sn $M_4N_{45}N_{45}$) arose in the region of 1049–1058 eV. The shape of the C 1s high-resolution spectrum (Figure S7, Supporting Information) confirms the assumed chemical structure of BMADS-0.3 latex.

Although the presence of SnO_2 particles in the top layer (8 nm depth) of BMADS-0.3/SnO₂-50 coating was confirmed by XPS, the charge-contrast SEM image shows that there is no nanoparticle-rich zone at the surface (Figure 4A), which is usually formed due to the convective flow transport of nanoparticles to the evaporating meniscus during drying of composite latex/inorganic particles coatings.¹³ Instead, cross-section TEM analysis reveals formation of SnO₂ nanoparticles network over the full coating thickness (Figure 4B). It is most likely that binding to the latex surface prevents SnO₂ migration

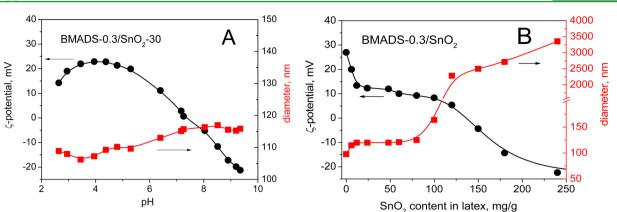


Figure 2. Dependence of electrokinetic potential values (ζ -potential) and particle size of BMADS-0.3/SnO₂ composites on pH (A) and amount of SnO₂ loaded in the latex, pH 5 (B).

Table 1. Coefficients of ⁵⁷Co Distribution (K_d) and ⁵⁷Co Recovery (R) for Latex, Colloidal SnO₂, and Latex/SnO₂ Composite^{*a*}

		BMADS-0.3		SnO ₂		BMADS-0.3/SnO ₂ -30		
media		$K_{\rm d}$, mL/g	R, %	$K_{\rm d}$, mL/g	R, %	$K_{\rm d}$ (composite), ^b mL/g	$K_{\rm d} ({\rm SnO}_2), {}^c {\rm mL/g}$	R, %
$CaCl_2$	0.001 M	0	0	7 080 567	99.1	415 297	13 843 220	99.5
	0.01 M	0	0	1 772 345	96.3	278 372	9 279 079	99.3
	0.10 M	37	1.8	369 015	84.6	37 520	1 250 658	94.9
	0.50 M	77	3.7	200 842	74.4	3909	130 295	66.1

^aColloidal SnO₂ used for sorption experiments was from the same batch as that used in composite. ${}^{b}K_{d}$ calculated for total weight of composite. ${}^{c}K_{d}$ calculated for the weight of SnO₂ in composite.

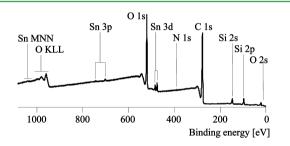


Figure 3. Wide-scan XPS spectrum recorded from BMADS-0.3/SnO $_2$ -50 composite coating.

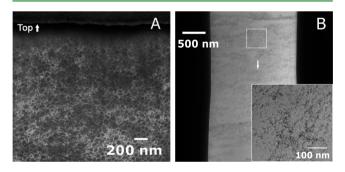
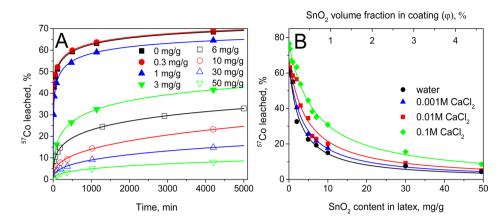
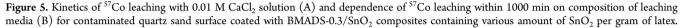


Figure 4. Charge-contrast SEM image (A) and cross-sectional TEM image (B) of BMADS-0.3/SnO₂-50 composite coating.

during drying and assures its homogeneous distribution in the coating.


It is important to mention that aggregate formation in the composite film is not beneficial for fixatives, since an inhomogeneous distribution of SnO_2 ion-exchange centers within the coatings can reduce their efficiency in cobalt radionuclides entrapment. Taking into account that the colloidal stability of the composite dispersion significantly


affects composite latex coatings microstructure,¹⁴ we have limited maximal content of SnO_2 in the BMADS-0.3 latex to 50 mg/g, i.e., to the composition which retains high colloidal stability.

Research Article

Investigations of kinetics of 57Co leaching from the contaminated surface show that the BMADS-0.3 latex coating is highly permeable for Co²⁺ ions: about 50% of ⁵⁷Co radionuclides were transferred from coated sand to liquid media within the first 30 min of contact and 65% within the first day (Figure 5A). Embedding SnO₂ nanoparticles to BMADS-0.3 coatings significantly reduced their permeability. ⁵⁷Co leaching dropped down to 4.3% when the SnO₂ volume fraction in the film was increased up to 4.7% (Figure 5B). The influence of sorbent K_d on composite coating permeability for Co²⁺ ions is clearly illustrated by ⁵⁷Co radionuclides leaching in solutions with different concentrations of Ca²⁺ ions (Figure 5B). Since the mechanism of Co^{2+} ions sorption on tin oxide is presumably ion exchange,^{10,11} Ca^{2+} ions compete with ⁵⁷Co radionuclides for ion-exchange sites on tin oxide, and the efficacy of ⁵⁷Co fixation within the BMADS-0.3/SnO₂ composite coating decreases with the increase of Ca²⁺ concentration in the leaching media (Figure 5B). Even at the maximum loading of the BMADS-0.3 latex with SnO₂ (50 mg/ g), ⁵⁷Co leaching through the composite coatings reaches about 20% after 6 days of contact with 0.1 M solution of CaCl₂ (Figure S8, Supporting Information). At the same time span, ⁵⁷Co leaching with the media with calcium ion concentrations typical for ground waters, i.e., 0.2-4 mM,¹⁵ increased only for 1.5–3% (Figure S8, Supporting Information), which can be still be considered as an indication of satisfactory fixation of cobalt radionuclides on a contaminated surface.

Comparing the data earlier reported for latex/cobalt hexacyanoferrate(II) coatings⁷ with the data obtained here for the BMADS-0.3/SnO₂ coatings, we can conclude that the

distribution coefficients of nanosized sorbents suitable for preparation of composite coatings has to be close to 10^6 mL/g . Only in this case the coatings with a volume fraction of inorganic sorbent up to 5% can efficiently suppress radio-nuclides leaching from contaminated surface and, thus, eliminate their migration with liquid media.

CONCLUSIONS

Here we have shown that the recently suggested concept of elimination of cesium migration from contaminated surfaces using latex/cobalt hexacyanoferrate(II) composite coatings can be generalized to other radionuclides. Colloidal SnO2 ex-situ synthesized by the sol-gel method was attached to the surface of amino-latex particles to yield latex/SnO₂ composite showing selective sorption properties toward cobalt radionuclides. Casting latex/SnO₂ composite dispersions containing up to 50 mg of SnO₂ per 1 g of the latex on the quartz sand has yielded coherent flawless composite coatings. Despite high hydrophilicity (advancing contact angle 30°) composite coatings with a SnO₂ volume fraction of 4.6% reduced ⁵⁷Co leaching from the contaminated surface to ~4% compared to 65% leaching from the surface coated with original latex. This allows the conclusion that latex/SnO₂ dispersions can be used as dust-suppressing formulations after nuclear accidents to eliminate migration of cobalt and nickel, which has similar chemistry, in the environment with liquid media (atmospheric precipitates, ground waters, etc.).

ASSOCIATED CONTENT

Supporting Information

Dependence of latex and SnO_2 particle size on pH; dependence of SnO_2 percentage remaining colloidally stable in BMADS- $0.3/SnO_2$ dispersion on the SnO_2 content in the latex and TEM image of aminolatex/SnO₂ composite; TEM image and particle size distribution for SnO_2 ; particle size distribution for BMADS- $0.3/SnO_2$ -30 composite in water and CaCl₂ solutions; isotherms of Co(II) sorption on SnO_2 and BMADS- $0.3/SnO_2$ -50; dependence of the distribution coefficient for ⁵⁷Co on colloidal SnO_2 on pH; kinetics of ⁵⁷Co recovery; SEM images of BMADS-0.3 and BMADS- $0.3/SnO_2$ -50 coatings; highresolution C 1s XPS spectra; kinetics of ⁵⁷Co leaching from contaminated quartz sand coated with BMADS- $0.3/SnO_2$ -50 composite. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +7-423-2311889. E-mail: sbratska@ich.dvo.ru.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support of the seventh EU Research Framework Programme (ERANET-Russia project STProject-144) and Subprogram 6 of the Program of Basic Research of FEBRAS "Far East" is gratefully acknowledged. Funding through Programmable materials-project of the Academy of Finland is also gratefully acknowledged. The authors are thankful to Leonard Schellkopf and Petr Formanek (Leibniz-Institut für Polymerforschung Dresden e.V.) for acquiring microscopy images of latex/SnO₂ composite particles.

REFERENCES

(1) Solovitch-Vella, N.; Garnier, J.-M. Comparative Kinetic Desorption of ⁶⁰Co, ⁸⁵Sr and ¹³⁴Cs from a Contaminated Natural Silica Sand Column: Influence of Varying Physicochemical Conditions and Dissolved Organic Matter. *Environ. Pollut.* **2006**, *141*, 98–106.

(2) Schwantes, J. M.; Orton, C. R.; Clark, R. A. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel. *Environ. Sci. Technol.* **2012**, *46*, 8621–8627.

(3) Parra, R. R.; Medina, V. F.; Conca, J. L. The Use of Fixatives for Response to a Radiation Dispersal Devise Attack-a Review of the Current (2009) State-of-the-Art. *J. Environ. Radioact.* **2009**, *100*, 923–934.

(4) Chon, J. K.; Lee, K.-J.; Yun, J.-I. Sorption of Cobalt (II) on Soil: Effects of Birnessite and Humic Acid. *J. Radioanal. Nucl. Chem.* **2012**, 293, 511–517.

(5) Roivainen, P.; Makkonen, S.; Holopainen, T.; Juutilainen, J. Transfer of Elements Relevant to Radioactive Waste from Soil to Five Boreal Plant Species. *Chemosphere* **2011**, *83*, 385–390.

(6) Fox, G. A.; Medina, V. F. Evaluating Factors Affecting the Permeability of Emulsions Used to Stabilize Radioactive Contamination from a Radiological Dispersal Device. *Environ. Sci. Technol.* **2005**, *39*, 3762–3769.

(7) Bratskaya, S.; Musyanovych, A.; Zheleznov, V.; Synytska, A.; Marinin, D.; Simon, F.; Avramenko, V. Polymer-Inorganic Coatings

ACS Applied Materials & Interfaces

Containing Nanosized Sorbents Selective to Radionuclides. 1. Latex/ Cobalt Hexacyanoferrate (II) Composites for Cesium Fixation. ACS Appl. Mater. Interfaces **2014**, *6*, 16769–16776.

(ŝ) Haas, P. A. Review of Information on Ferrocyanide Solids for Removal of Cesium from Solutions. *Sep. Sci. Technol.* **1993**, *28*, 2479– 2506.

(9) İnan, S.; Koivula, R.; Harjula, R. Removal of ⁶³Ni and ⁵⁷Co from Aqueous Solution Using Antimony Doped Tin Dioxide–Polyacrylonitrile (Sb Doped SnO₂–PAN) Composite Ion-Exchangers. *J. Radioanal. Nucl. Chem.* **2013**, 299, 901–908.

(10) Misak, N.; Shabana, E.; Mikhail, E.; Ghoneimy, H. Kinetics of Isotopic Exchange and Mechanism of Sorption of Co (II) on Hydrous Stannic Oxide. *React. Polym.* **1992**, *16*, 261–269.

(11) Koivula, R.; Harjula, R.; Lehto, J. Structure and Ion Exchange Properties of Tin Antimonates with Various Sn and Sb Contents. *Microporous Mesoporous Mater.* **2002**, *55*, 231–238.

(12) Musyanovych, A.; Rossmanith, R.; Tontsch, C.; Landfester, K. Effect of Hydrophilic Comonomer and Surfactant Type on the Colloidal Stability and Size Distribution of Carboxyl- and Amino-Functionalized Polystyrene Particles Prepared by Miniemulsion Polymerization. *Langmuir* **2007**, *23*, 5367–5376.

(13) Luo, H.; Cardinal, C. M.; Scriven, L. E.; Francis, L. Ceramic Nanoparticle/Monodisperse Latex Coatings. *Langmuir* 2008, 24, 5552–5561.

(14) Sun, J.; Velamakanni, B. V.; Gerberich, W. W.; Francis, L. F. Aqueous Latex/Ceramic Nanoparticle Dispersions: Colloidal Stability and Coating Properties. *J. Colloid Interface Sci.* **2004**, *280*, 387–399.

(15) Schot, P. P., Wassen, M. J. Calcium Concentrations in Wetland Groundwater in Relation to Water Sources and Soil Conditions in the Recharge Area. J. Hydrol. **1993**, 141, 197–217.